Quantifying Hydrologic "Flashiness"

R. Peter Richards, David B. Baker, Timothy T. Loftus
Water Quality Laboratory
Heidelberg College
Tiffin, Ohio 44883

prichard@heidelberg.edu http://www.heidelberg.edu/WQL

Outline

- Concepts of flow regime and flashiness, and a new flashiness index
- Regional levels and trends in flashiness in Upper Midwest, 1975-2001
- Selected applications
- **&**Conclusions

The Flow Regime and Flashiness

- The flow regime encompasses all aspects of the hydrology of a river or stream, particularly:
 - magnitude and duration and seasonal distribution of high and low flows
 - rapidity and magnitude of change in flow from hour to hour or day to day - "Flashiness"
- Departures from natural flow regime are typically detrimental to resident ecosystem
 - these typically include increased peak flows, reduced base flows, and more rapid changes in rate of flow (development)
 - or just the opposite (dams)

Flashiness Visualized

Flashiness Visualized

How does one measure flashiness?

- Most often with measures drawn from the distribution of flows:
 - Ratios of high to low flows, e.g. 20th/80th
 - Spread measures (e.g. 75th-25th)
 - Variance measures: CVLF5, CV of flows or stages
 - Skewness measures: Tomean (fraction of days with flows that exceed mean flow)

Shortcomings...

- Some of these measures may not be sensitive enough to the tails of the distribution
- They are based on the distribution of flows without regard for their temporal sequence
- They may be useful, but ultimately they're not measuring the right thing
- Flashiness is clearly tied up with temporal sequence of flows

Shortcomings...

Other measures that reflect flashiness

- Richter's 33 Indicators of Hydrologic Alteration
 - *n*-day minimum or maximum flow
 - base flow, number of pulses of high or low flow
 - rise rate, fall rate, number of reversals in flow
- Not directly designed to measure flashiness
- Because most use only part of the annual flow data, values are rather variable from year to year, and thus less sensitive to subtle change over time or space than a measure that uses all the data

Flashiness measured by pathlength

Richards-Baker Pathlength (aka R-B Index)

$$R - B Index = \frac{\sum_{t=1}^{n} |q_{t-1} - q_t|}{\sum_{t=1}^{n} q_t}$$

- Sum of the absolute values of the day-to-day changes in mean daily flows.
- Normalize for flow by dividing by the total flow

Some Properties:

- Low year-to-year variability, therefore sensitive to sustained trends
- Integrates entire range of hydrological response, but primarily affected by high flow

Regional patterns and trends

Regional patterns and trends

- →Based on USGS mean daily flow data for
 510 gages in upper Midwest: OH, IN, IL, IA,
 WI, MI.
- All had data that spanned 1975-2001
- We calculated annual R-B Indices for each year and gage (~14,000 index values)
- We visualized trends using LOWESS curves and assesed trend significance using linear regression analysis.

Hypotheses to explain trends:

- Urbanization leads to increased flashiness
 - Anybody surprised?!
- Rural trends in flashiness refect complex interactions between changing climate (especially storm intensity), soil types, and agricultural management practices (conservation tillage, especially soybeans)

Some Specific Applications

Dam Construction:

East Fork Whitewater River, IN USGS 03276000

Dam Removal:

- > Would expect flashiness to increase
- Not apparent in several examples we've studied
- Usually fairly recent; post-removal history too short
- → Usually run-of-river dams, silted up, so hydrology is not too different from undammed condition.

Urbanization:

Accotink Creek, Fairfax Co, Virginia, USGS 01654000

(Thanks to Taylor Jarnagin, EPA-ORD, for % impervious cover data)

Urbanization:

Peachtree Creek, Atlanta, GA USGS 02336300 Snake Creek, GA piedmont USGS 02337500 (Control)

(Thanks to Betsy Frick, USGS Atlanta for suggesting this dataset)

Reforestation:

Raccoon Creek, Southeast OH USGS 3202000

Conclusions

- The R-B Index is a sensitive measure of spatial and temporal variation in flashiness
- Flashiness shows non-random patterns of spatial variation regionally in the Upper Midwest
- Trends in flashiness in the Upper Midwest show spatially coherent patterns, but are not easily explained
- Quantified land use history is rare
- When land use history is available, the R-B Index often documents the expected changes in flashiness
- There are surprises as well...we can learn from them